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and Bio/CMOS interfaces

Lecture #5
Amperometric Biosensors
(with Oxidases and P450)
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Lecture Outline

(Book Bio/CMOS: Chapter’ paragraph § 5.2 & 10.2)

P450 based principle of detection

Electrochemical interfaces with
enzymes

Faradaic currents at the interface

Electrochemical cells and equivalent
circuits
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CMOS/Sample interface
- - -

R T 7

The interface between the CMOS circuit and the bio-
sample needs to be deeply investigated and organized
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Redox with P450

The typical redox involving a cytochrome P450 is as follows:

RH + O, + NADPH + H*—22_, ROH + NADP* + H,0

The coenzyme NADPH i1s mainly providing the need for two
electrons required by the drug transformation. Without NADPH,
the reaction occurs in water solution using hydrogen ions by
water but need two extra electrons:

RH + O, + 2H* +@ P9, ROH + H,0
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P450 Cytochromes working Principle

O,
NADPH4#*
Cytochrome
P450 2B4
NADP*
H-O-H

more soluble
R-OH  Oxidized form then

faster secreted
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P450-based Detection
@

Drugs Oxidized drugs

Oxygen Cytochrome P450
Amperometric

@ Detection !!!!
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P450 based Detection

H (e.g. benzphetamine

g Cytochrome
S P450 2B4

\ R-OH Oxidized form /

What’ s about the electro-CHEMICAL properties?
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P450 based Detection

\4

O

NADP*

H-O-H

2

From electrode

H (e.g. benzphetamine

gis Cytochrome
> P450 2B4

v
R-OH Oxidized form

\4

Current versus the redox species amount

[concentration] upon the time
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How to measure a redox
reaction?

R
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The three-electrode
Electrochemical cell

(c) S.Carrara
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Different kinds of three-
electrode Electrochemical-cell

Electrodes

Reference
{Az/AgCl) Workang
Pt Auor C)
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The three-electrode
Electrochemical cells

(c) S.Carrara
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Electrochemical cells
with multiple-electrodes

Multiple-WE Common RE Common CE
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Detection Constrains

(c) S.Carrara
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Equivalent circuit
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Equivalent circuit with
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Faradaic currents
from Crono-Amperometry

3C,
5 2C, |
| o -
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O | Ai .
‘Constant bias »

Time
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Faradaic currents
from Cyclic Voltammetry

Oxidation Potential

Current

Reduction peak

Oxidation peak

Potential

Standard Potential

Reduction Potential
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CV with Hydrogen Peroxide
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O+ reduction and H202 oxidation observed by potential sweeping
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Redox with Hydrogen Peroxide

The hydrogen peroxide provides two possible redox reactions. An
oxidation:
G650 mP3
Hzoq2 =0, +2H" +

The produced Oxygen can be further reduced :

007>
0, + 4H" +‘ 2 H,0
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Relevant Redox Reactions Equations?
VJMAX — f ([C]) Nernst equation

Randles-SevCik
equation

0
d
[ = f ([C],t)‘V:COnst Cottrell equation
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To derive electrochemical Equations we
need of the Laplace’ s Transforms

fo)=Ll0l= [fwevar ="

n+l1

A

Liaf(t) + bg(t)| =af (s) + bg(s)

L[?} — ()~ £(0)
5 1) o (1)
{ 7 }—sf(s) 5 £(0) [ i }
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Fick’s Laws

The mass flow also has a direction driven by the gradient of
concentration (defined by means of the vector differential
operator):

— o N
Jm = —DVC(x,t)

In non-vector form (by rotating the x-axis in the direction of the
maximum flux and neglecting the variations on y- and z-axes):

0C(x,1)
Ox

The accumulation rate 1s provided by the mass flux through a

fluidic volume: . ’
0C(x,t) Om . 0C(x,1) Da C(x,1)

jn &2 =D

ot  Ox ot Ox?
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The Cottrell Equation

[C1] Linear diffusion equation

oC(x,t) . 0*C(x,1) _
" L Ls[w}sf(s)—f(o)

| [ o
Boundary conitions $C(s.0)= C(x.0)= D 0°C (62“,1‘)
Cos0)=Co | c(x,0)= C(x >0y 2 C,
A Cl ) = 0°C(x,s) s - C
TmC0,N=0 ~a ~pCE)=-7
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The Cottrell Equation

526’(x,s) s - Co
o2 DW=
A C
C(x’S):_O+A(S)€_ S/DX+B(S)8SMX
S
lim C(0,¢)=0 ) .
t— 00 ' SR limC(x,S) _ >0
n n. X—>00 g
LS[t ]: n+l
S
B(S):O,While é(x-S):&-l-A(s)e_ s/ Dx
S
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The Cottrell Equation

[C1] Linear diffusion equation

I, l Boundary conditions C,(x,s) =

V=Vo J\ By definition
—_— t

>

C

A

=0 4 A(s)e VP

o) =" —np [ac(x’ t)]xzo,

Ox

\/BCO (x,5)

Js

i(s) . 0C(xs) 2 (<) = nFA
A = nF P , (s)
74 x=0
/earrelationshi
» [C]

nFA\/—

Cottrell equation
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Redox reactions from Voltammetry

Randles-SeVéikL

Oxidation Potential

|

quation

Oxidation peak

Peak current

/

Z

Reduction peak

Standard Potential

ReductiorI Potential
vy
Nernst equation
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Standard free energy

Redox Reactions

Reaction coordinate

(c) S.Carrara
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)

Nernst Equation

Redox Reaction _ e o
O+e < R
Equilibrium Constants Ka
§ p—
0 _% 0 _ AGY+anF(E—E?) _AG, | aF(E-E°)
kc =kce =kce RT :kcoe RT ¢ RT
) _AG, 0 _ AGY-(1-apnF(E-E0) _AG) (~a)F(E-E°)
_ RT — - 0, RT RT
k, =k,e ke . kle B e
@ Equilibrium:
AGY AGY
— L — a
E=0;a=05k. =k, = kie ® =kle 7@ =k’
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Nernst Equation

Redox Reaction —Ke o _ @F(E- E°)
k.=k RT
O+e < R c=RE€ |
T k _ko (l—a)n;;§E—E0)
The current from the redox is a—K €

i=i —i =nFAlk.C,(0,1)—k, C,(0,1)]

anF (E - E0) (1 - a)nF(E—EQ)

i =nFAK’ |Co(0,8)e™— * — — Cr(0,t)e =

@ Equilibrium:
.  anF(E-E°) (1—a)nF(E—E?)
i=0= Co(0,t)e”— &  =Cr(0,t)e =
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Nernst Equation
@ Equilibrium:

. ~ anF(E-E°) (1—a)nF(E—E?)
i=0= Co(0,t)e " 't =Cr(0,t)e =

Co(0, 1) :enF(i;EO) :> nF(E — E°) o [CO(O, t)]

Cr(0,1) RT Cr(0,1)

E:E°+R—T,1n[
ni

C()(O, l‘)]
Cr(0,7)] Nernst equation

If | n| electrons are involved!
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Redox reactions from Voltammetry

Oxidation Potential

I
Randles-Sevcik e(]uation

Peak current

Oxidation peak

/

+vt

Z

Reduction peak

Standard Potential

Reductlorl Potential Nernst equation

v v RT. [C (0,¢)
0o, KT 0
E=f Fln[CR(O t)]
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Randles-Sevcik Equation

Voltage Sweep C()(O, t) B eF(EinitiaIl;vt— £9)
E = El. + Ut CR(O, t) B
@O (x,8) = G + A(s)e™*'P*
S
jx,t)= 1) _ nFD{aC(x’ ’ )} = i(t) = nFAD{ oCx, ! )}
A ox =0 Ox =0

o€ %4 FD . nFDv
[ a(i )]izi X nRTvC(O’t)':> lpeak(t) x nFA RT C(O,t)

peak
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Randles-Sevcik Equation

CO (O’ l ) F(Eiitial +v! — EO)
— € RT
Voltage Sweep CR((), t)

LE=FE +ut

nFDy,
LA

I (peak) 4

> [C]
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Redox reactions from Voltammetry

Randles-SevcCik equation for the Peak current
nFDv I Oxidation Potential
C(0,1).

RT N

ipeak () o< nFA

Oxidation peak

/

Standard Potential

ReductiorI Potential
v Vv
E—g" + XL [
nkF

Reduction peak

CO(O, t)]
CR(O, t) |

Nernst equation
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