

EDMI Microsystems and Microelectronics

MICRO-614: Electrochemical Nano-Bio-Sensing
and Bio/CMOS interfaces

Lecture #5

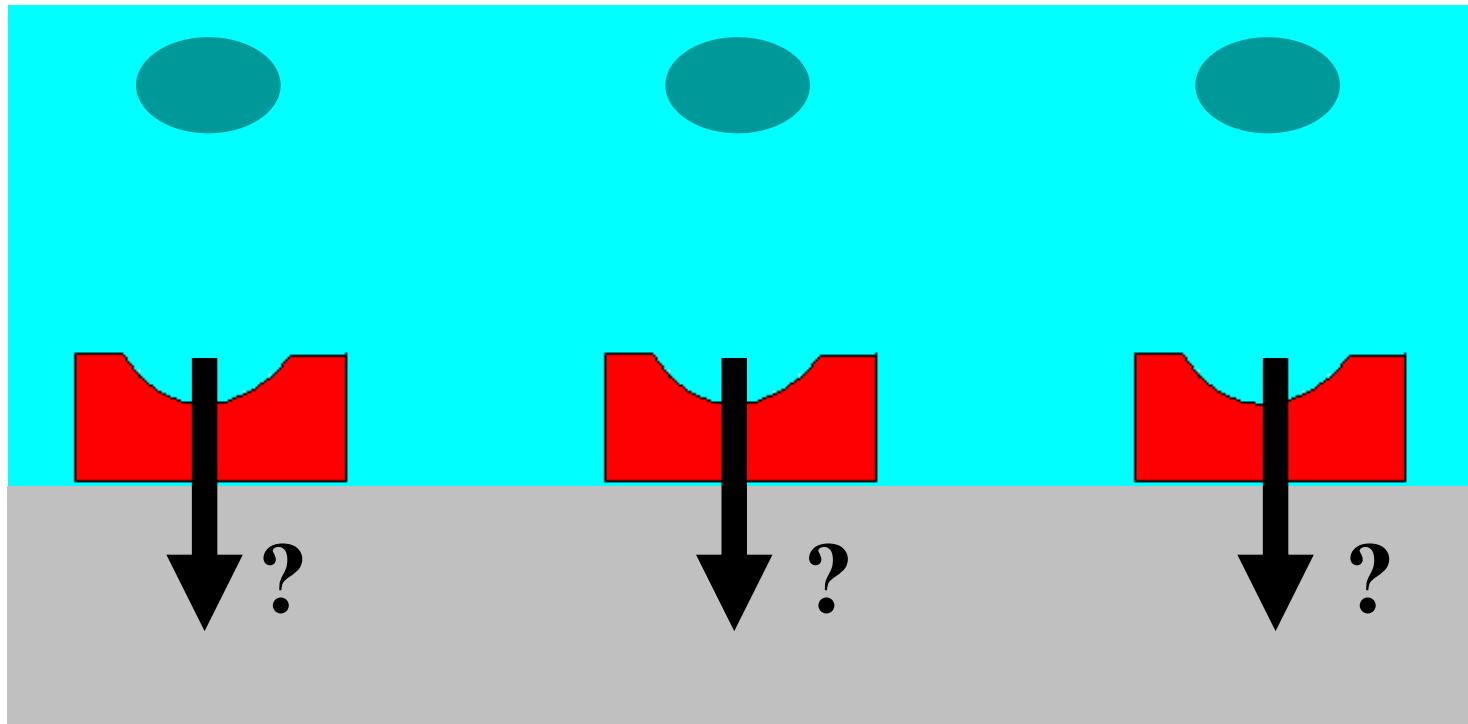
Amperometric Biosensors (with Oxidases and P450)

Lecture Outline

(Book Bio/CMOS: Chapter' paragraph § 5.2 & 10.2)

- P450 based principle of detection
- Electrochemical interfaces with enzymes
- Faradaic currents at the interface
- Electrochemical cells and equivalent circuits

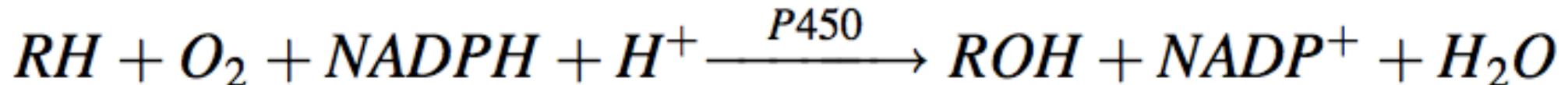
CMOS/Sample interface



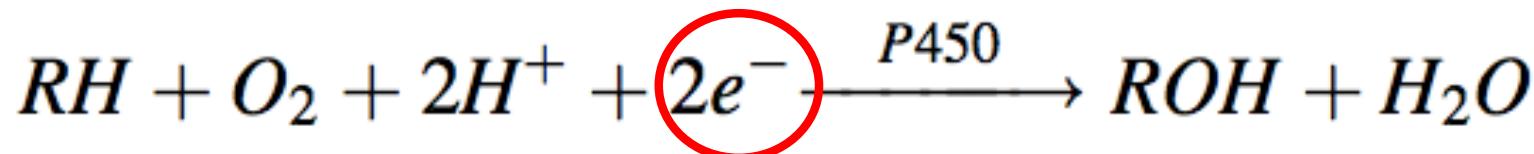
The interface between the CMOS circuit and the bio-sample needs to be deeply investigated and organized

Redox with P450

The typical redox involving a cytochrome P450 is as follows:



The coenzyme NADPH is mainly providing the need for two electrons required by the drug transformation. Without NADPH, the reaction occurs in water solution using hydrogen ions by water but need two extra electrons:



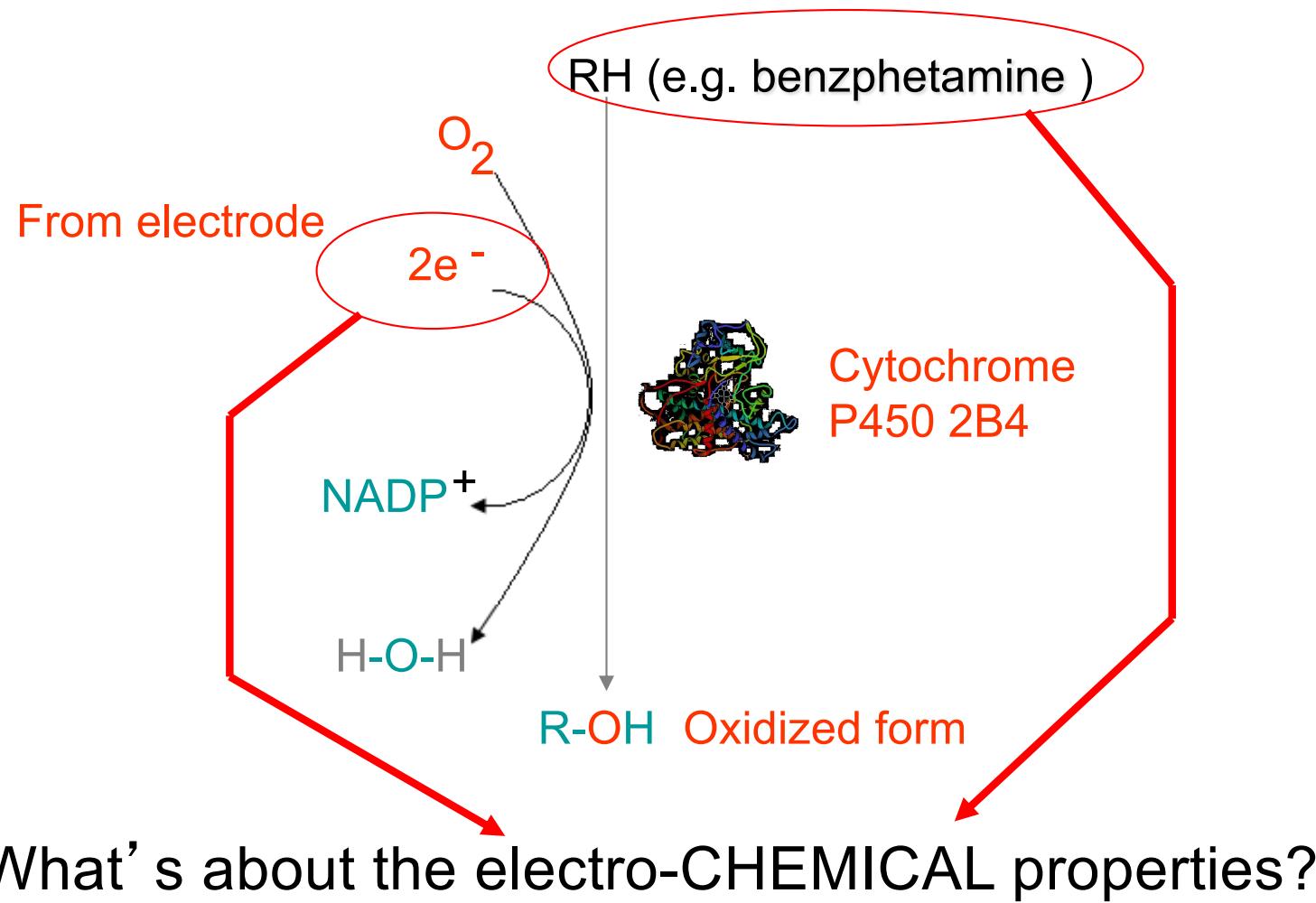
P450 Cytochromes working Principle



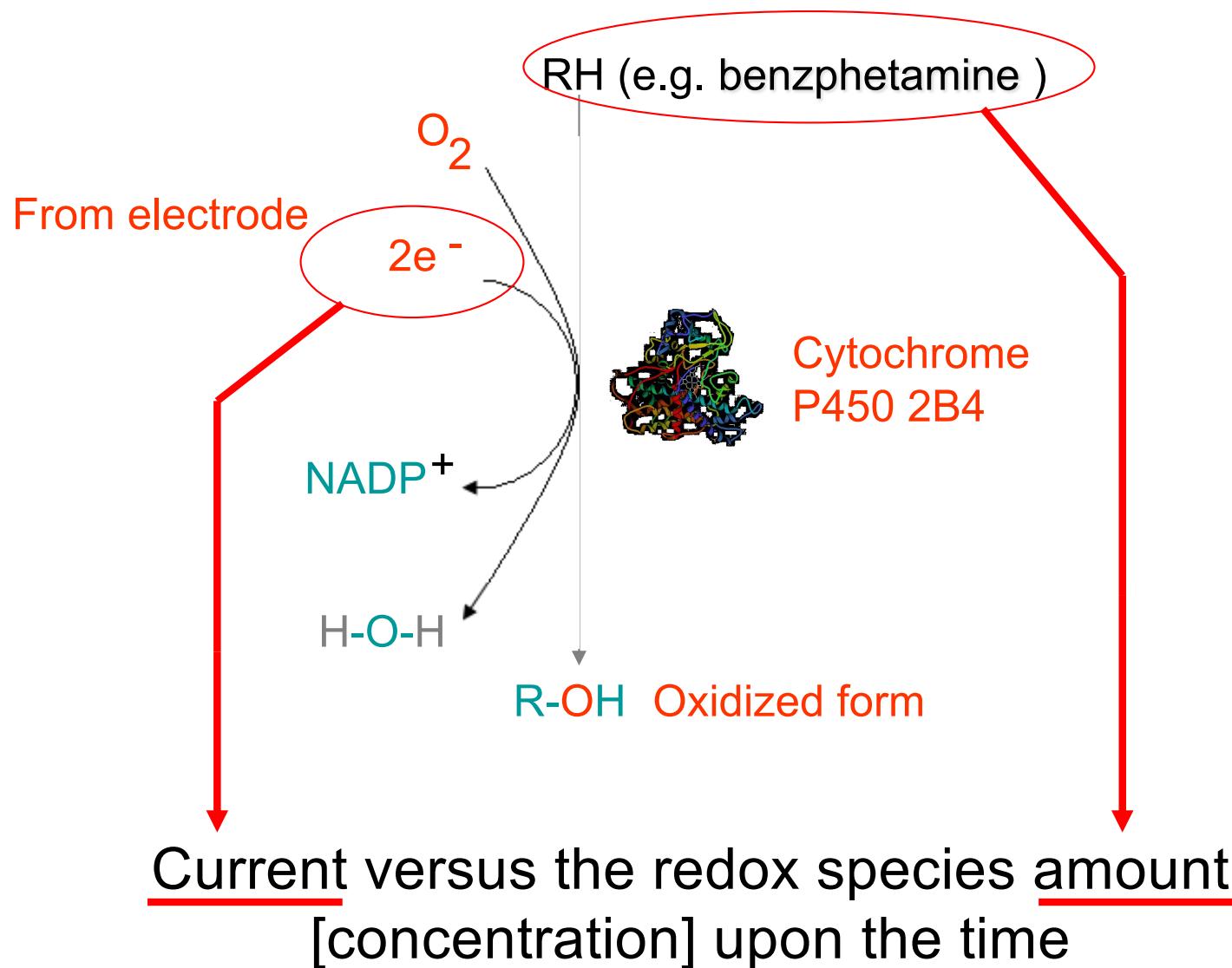
P450-based Detection



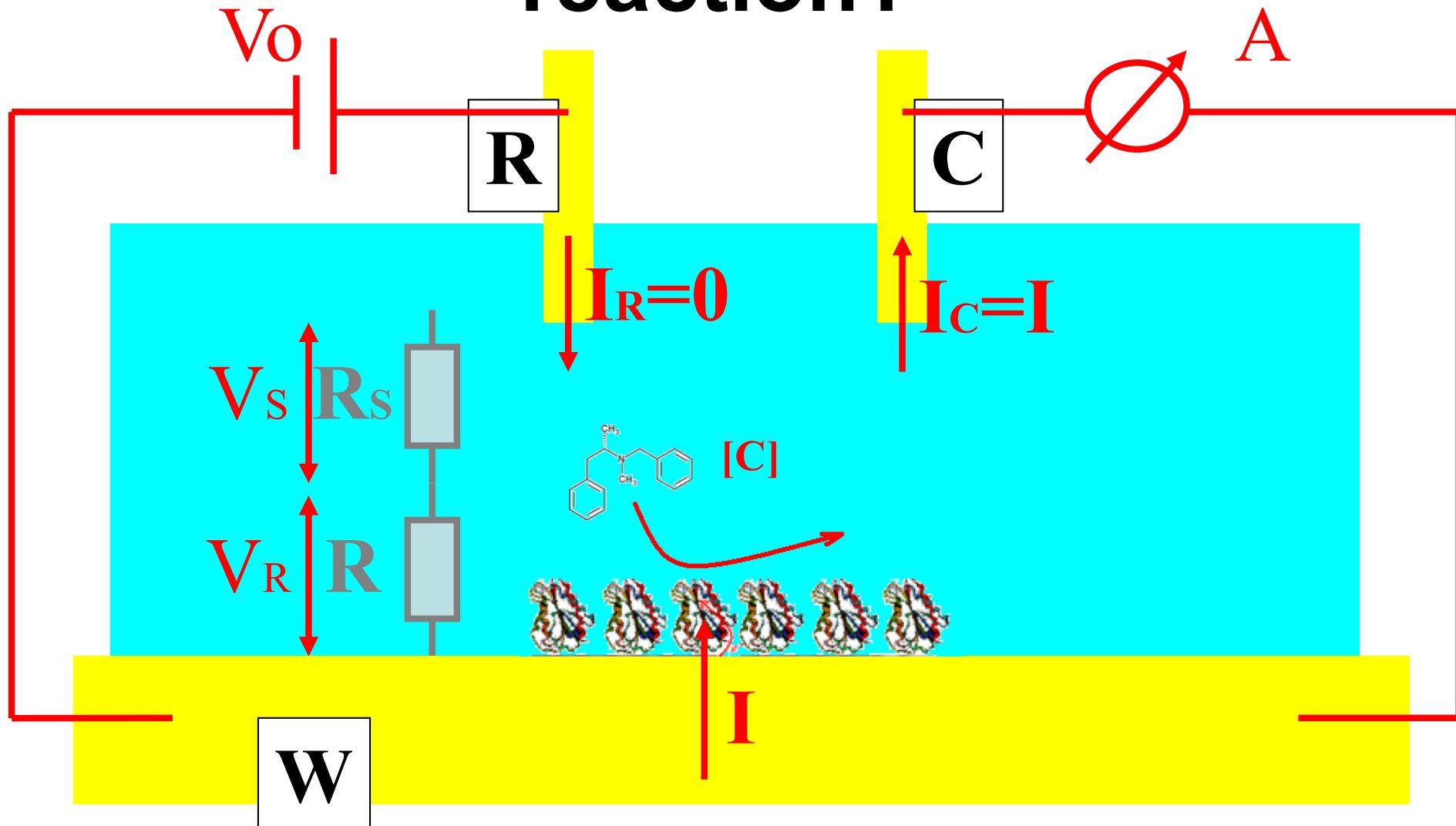
P450 based Detection



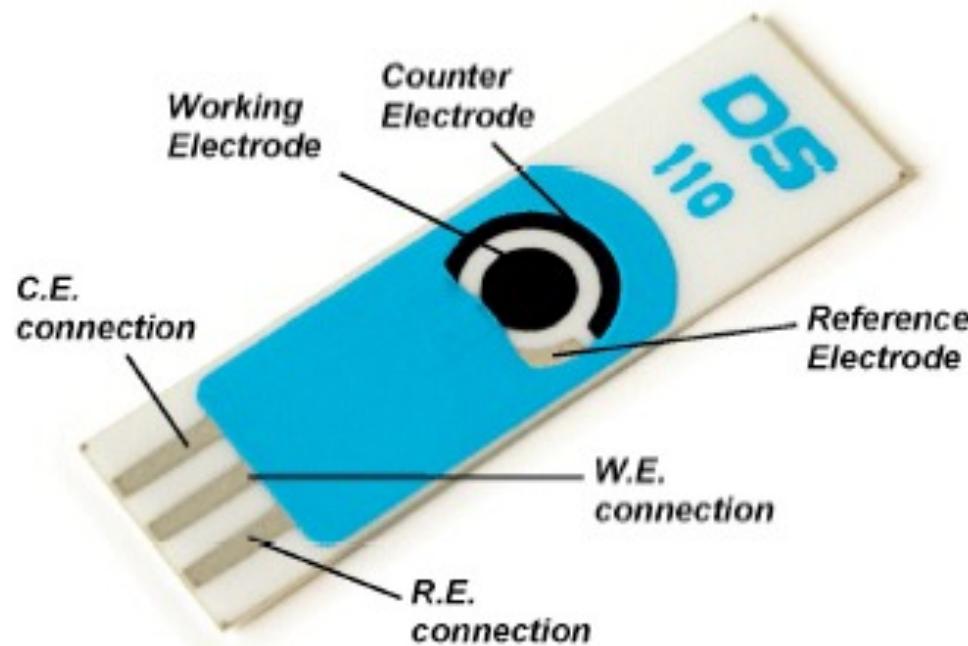
P450 based Detection



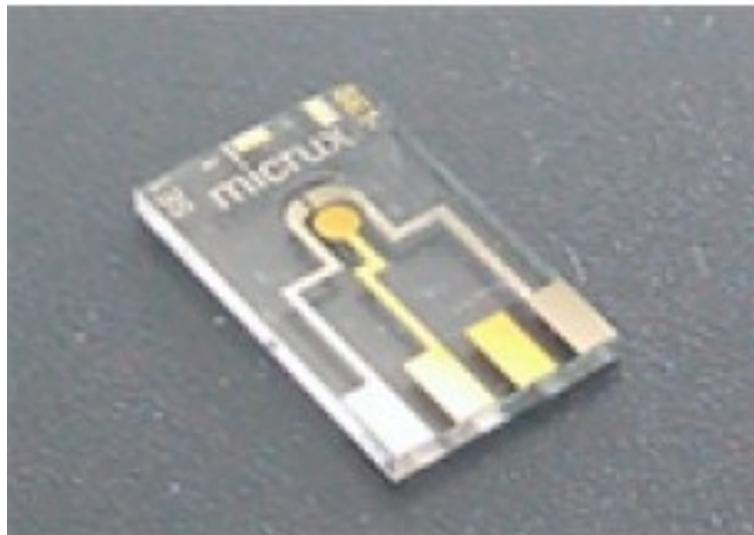
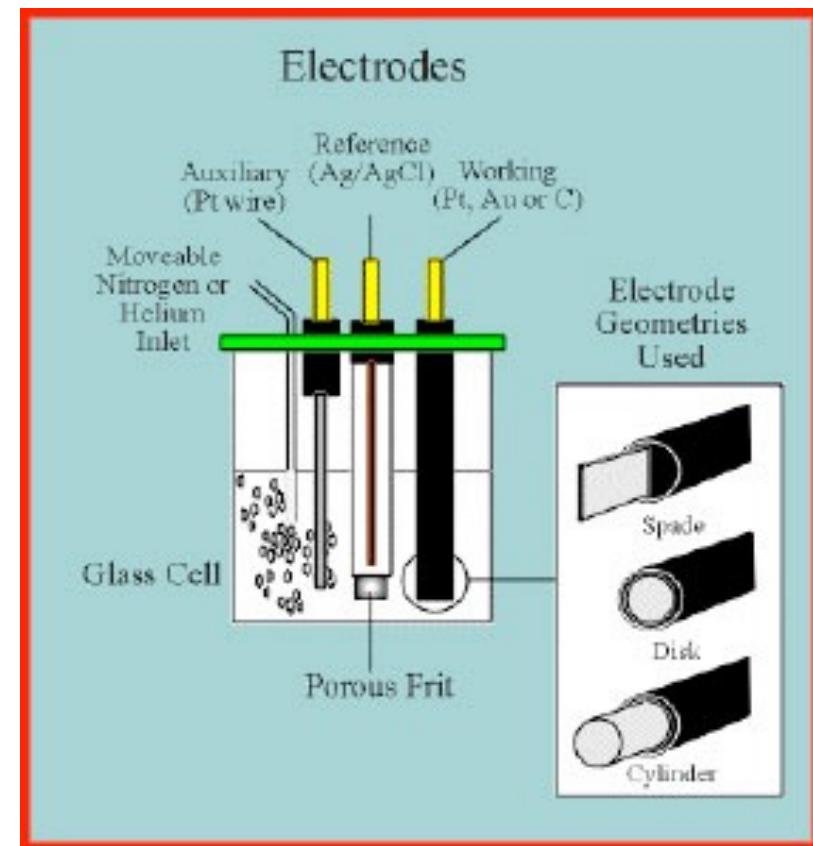
How to measure a redox reaction?



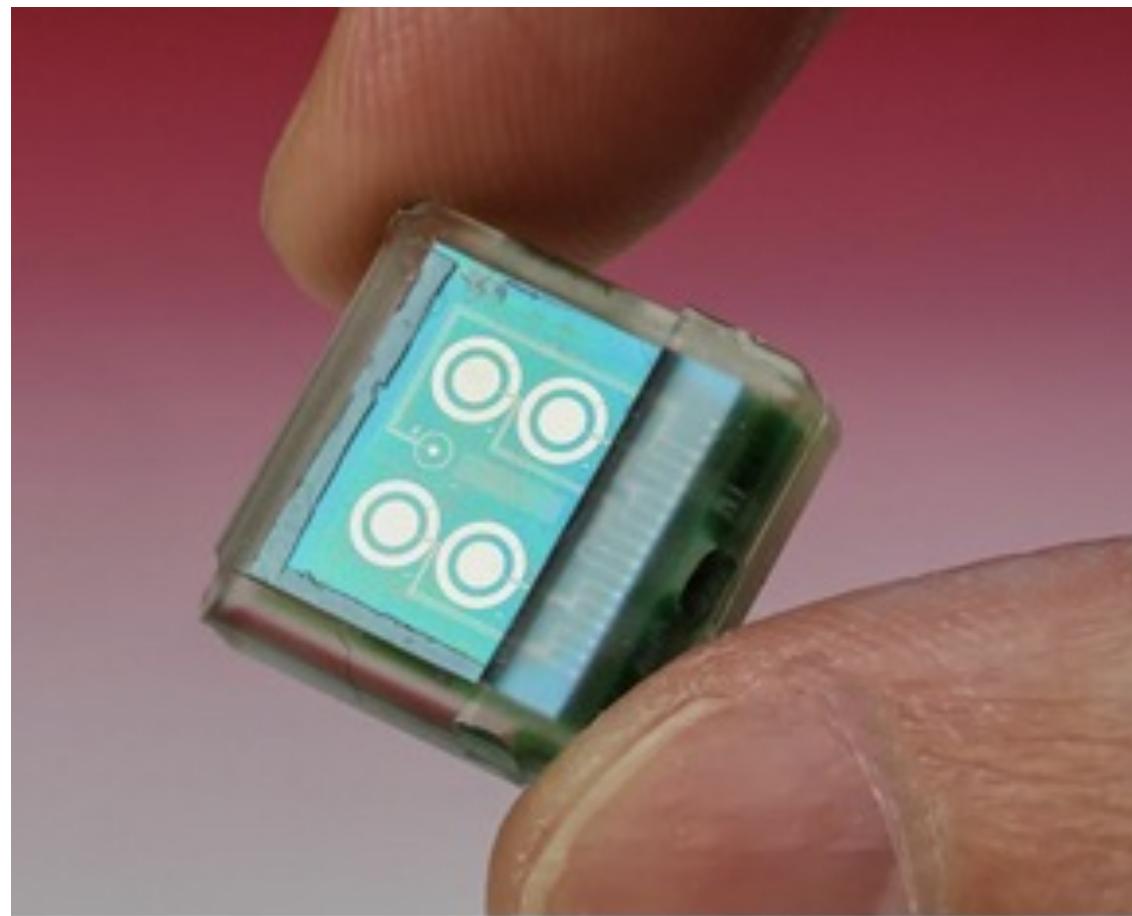
The three-electrode Electrochemical cell



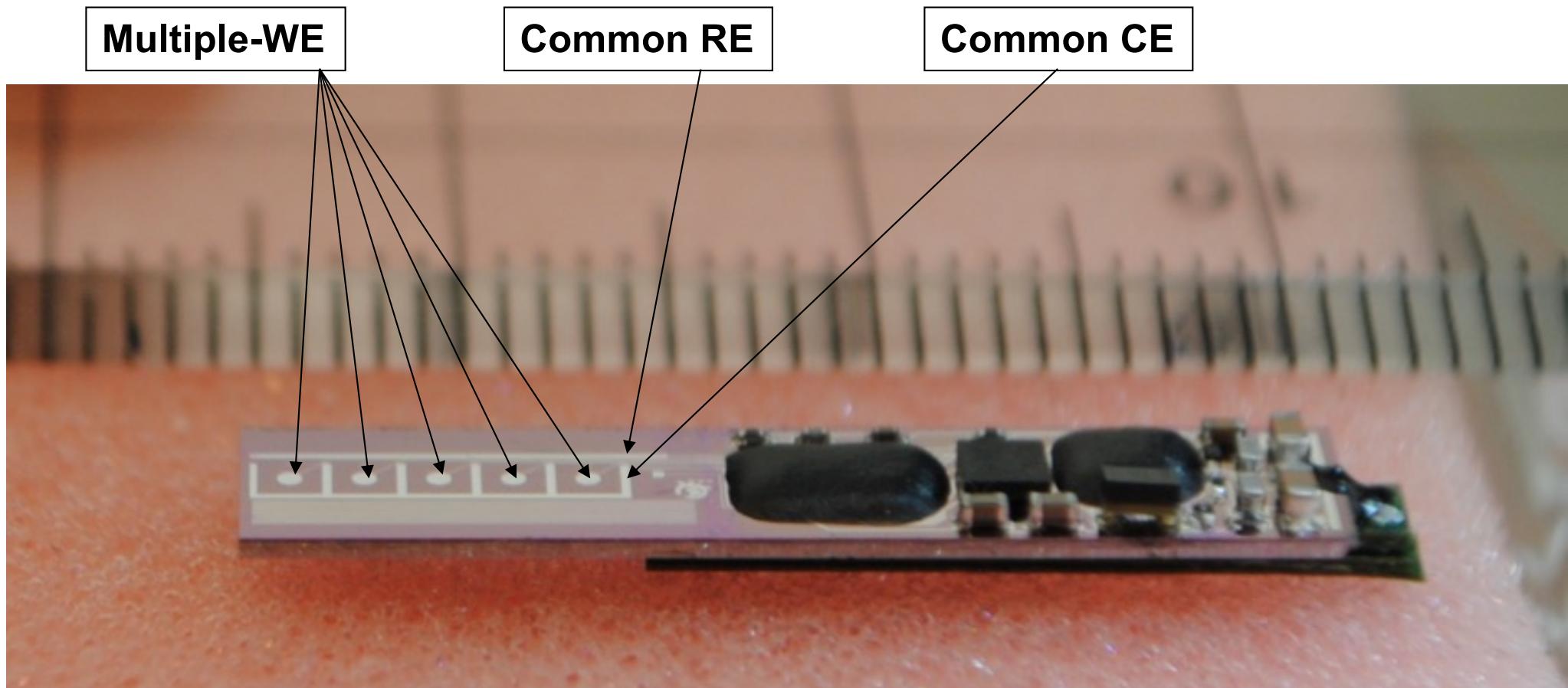
Different kinds of three-electrode Electrochemical-cell



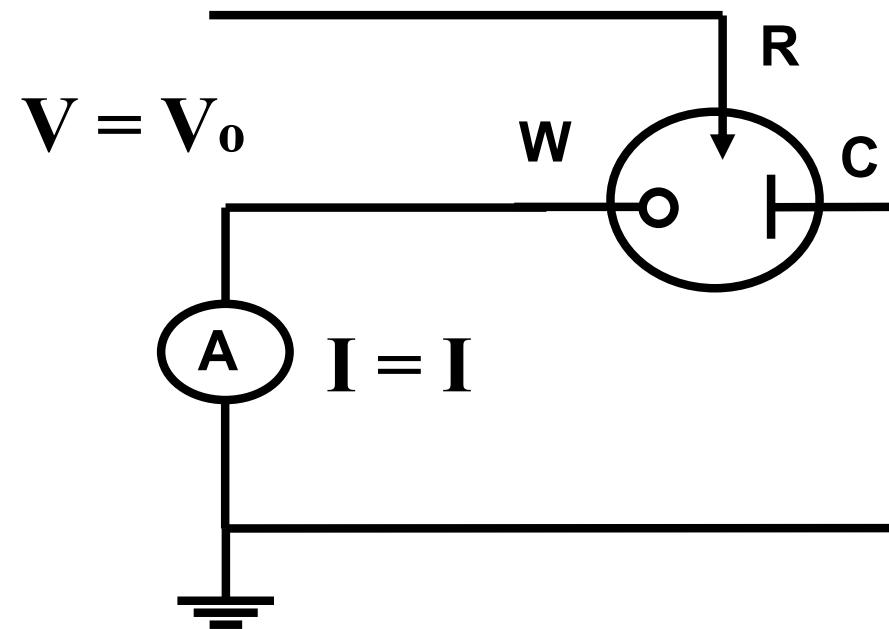
The three-electrode Electrochemical cells



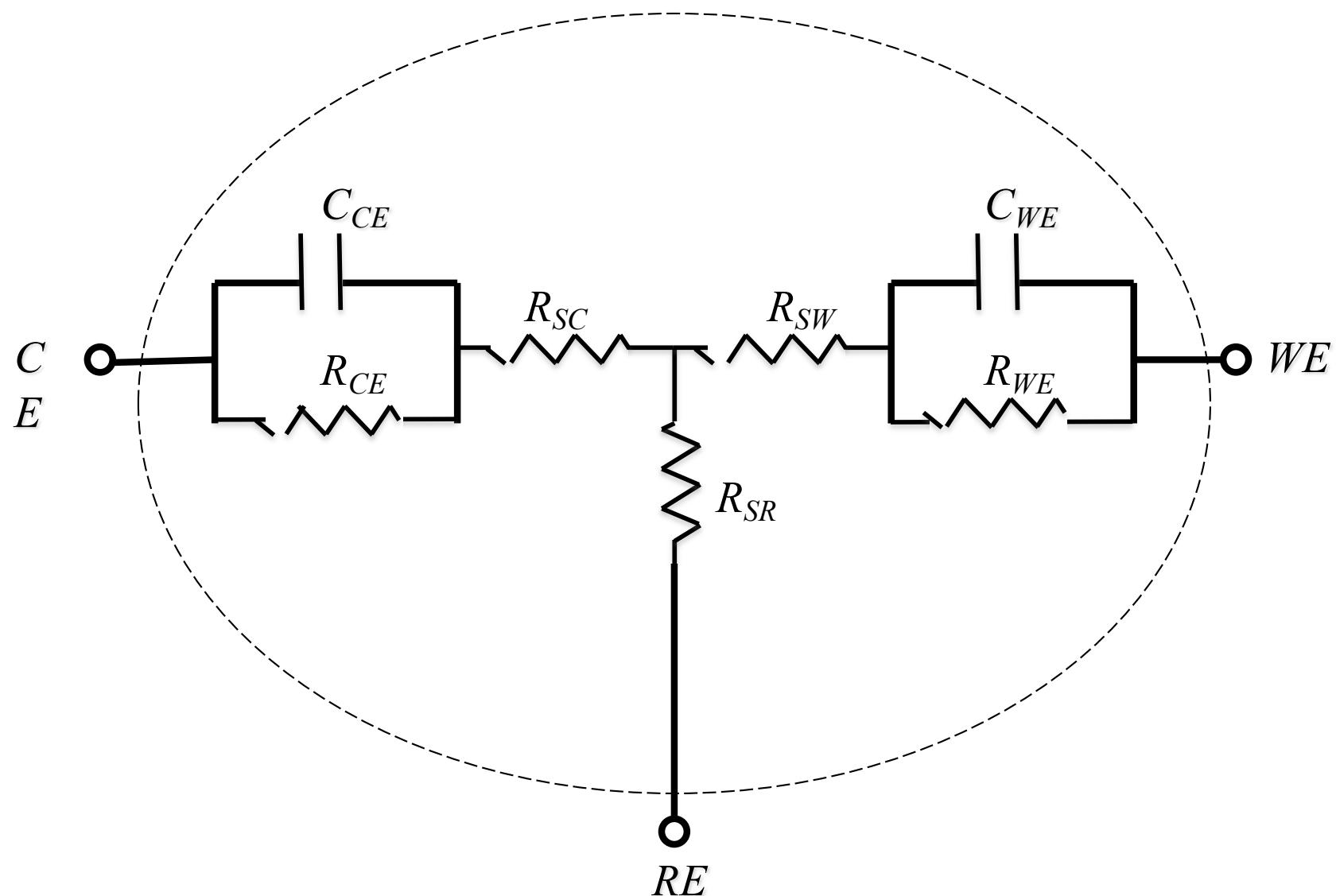
Electrochemical cells with multiple-electrodes



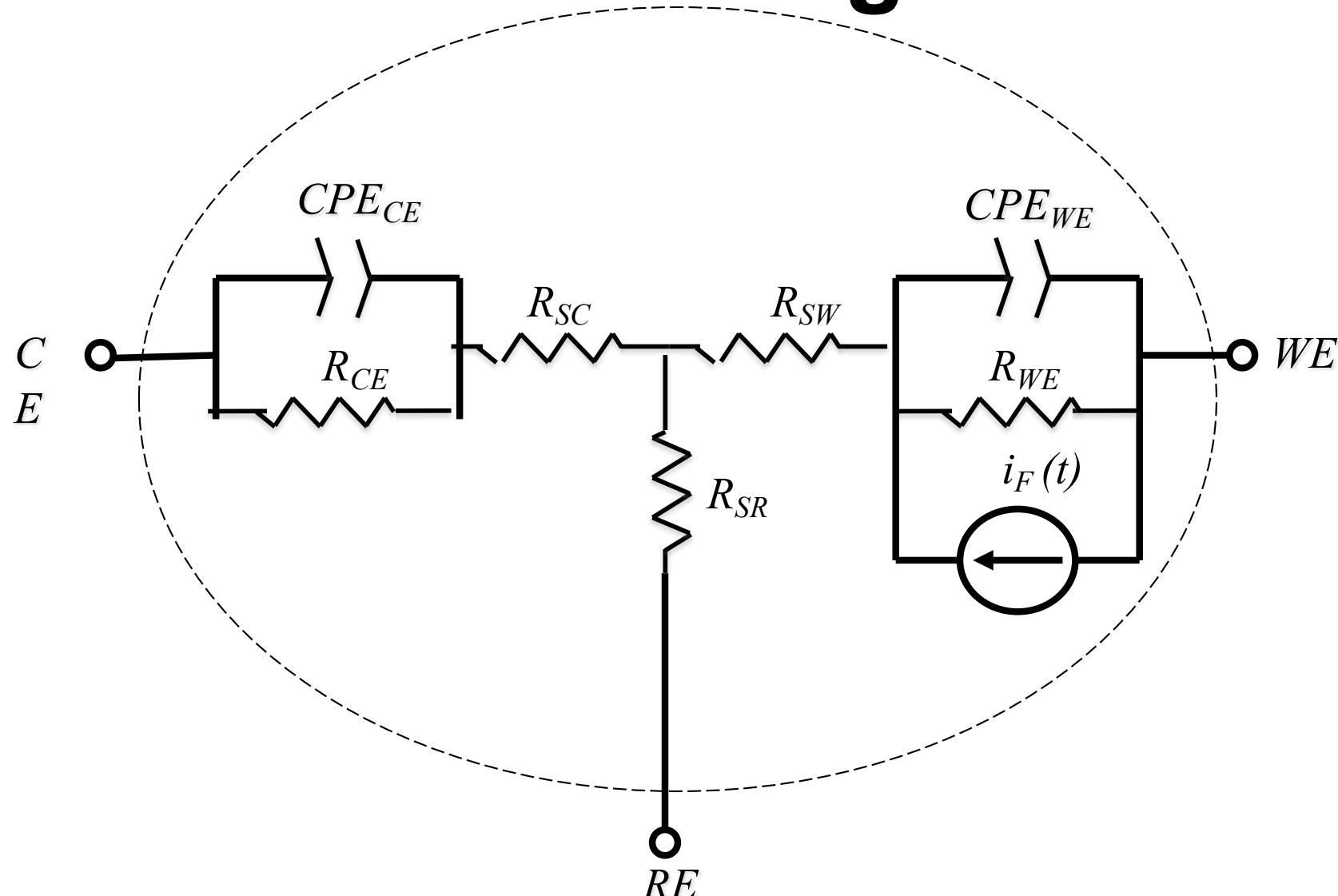
Detection Constraints



Equivalent circuit



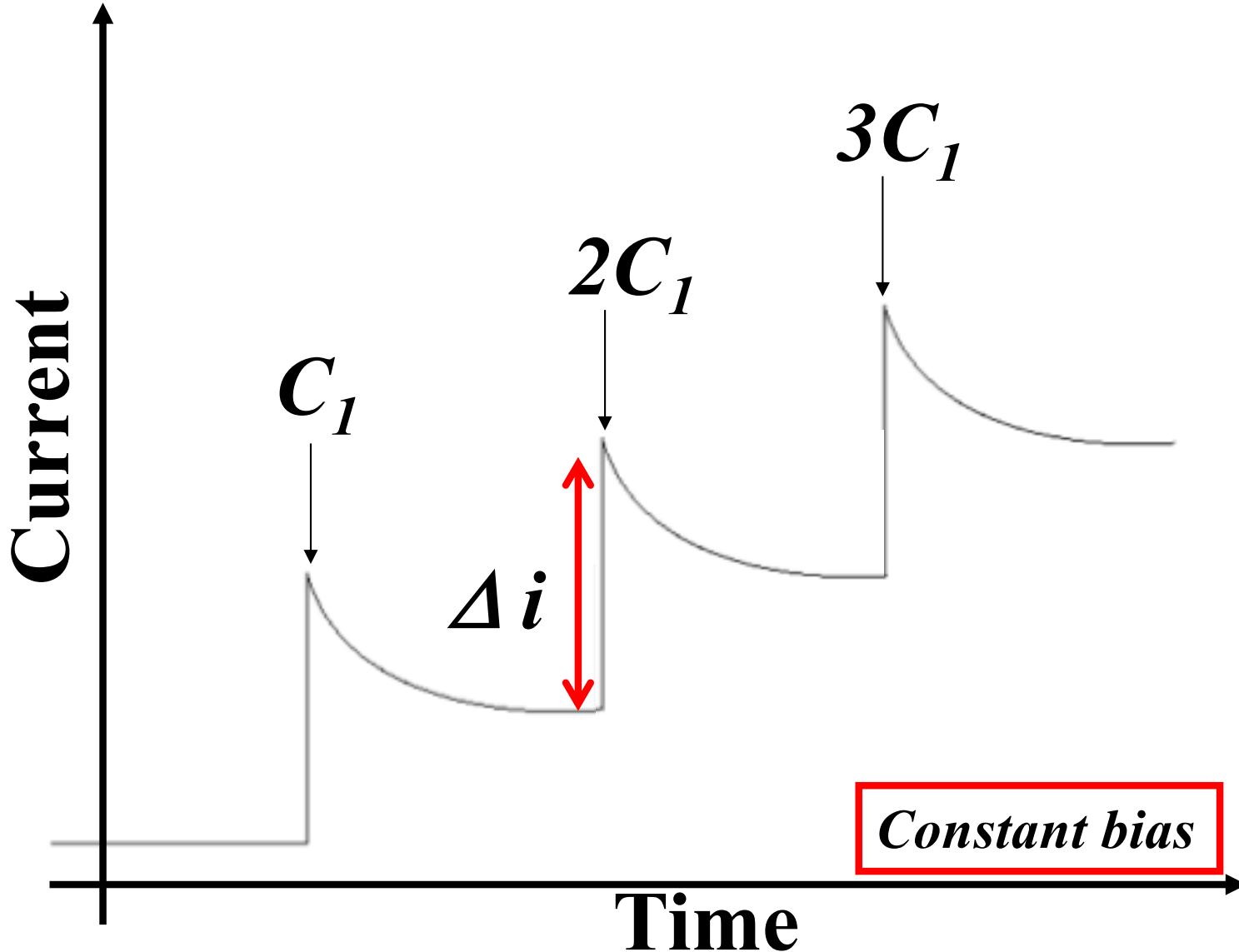
Equivalent circuit with Faradaic current-generator



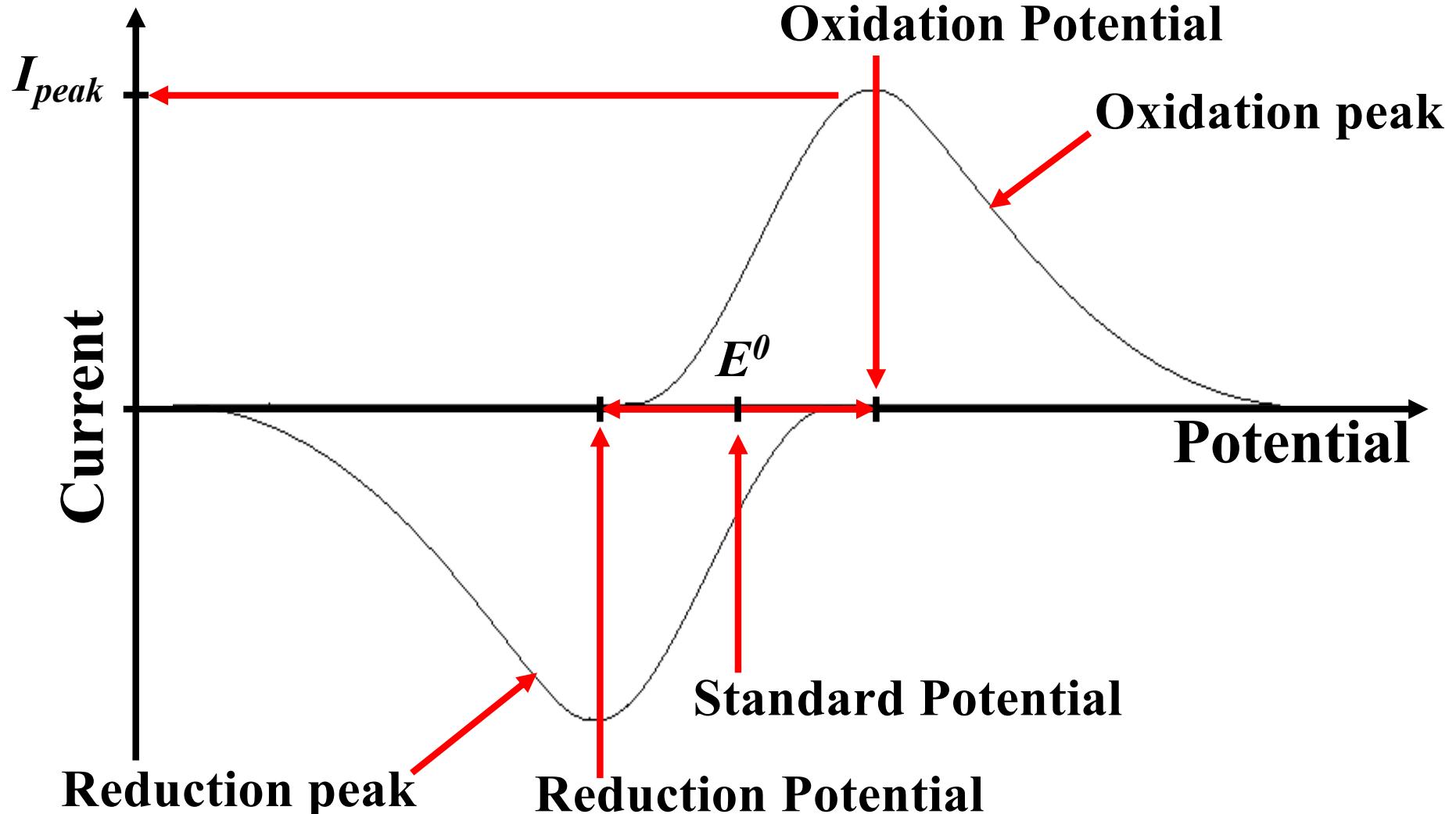
(c) S.Carrara

16

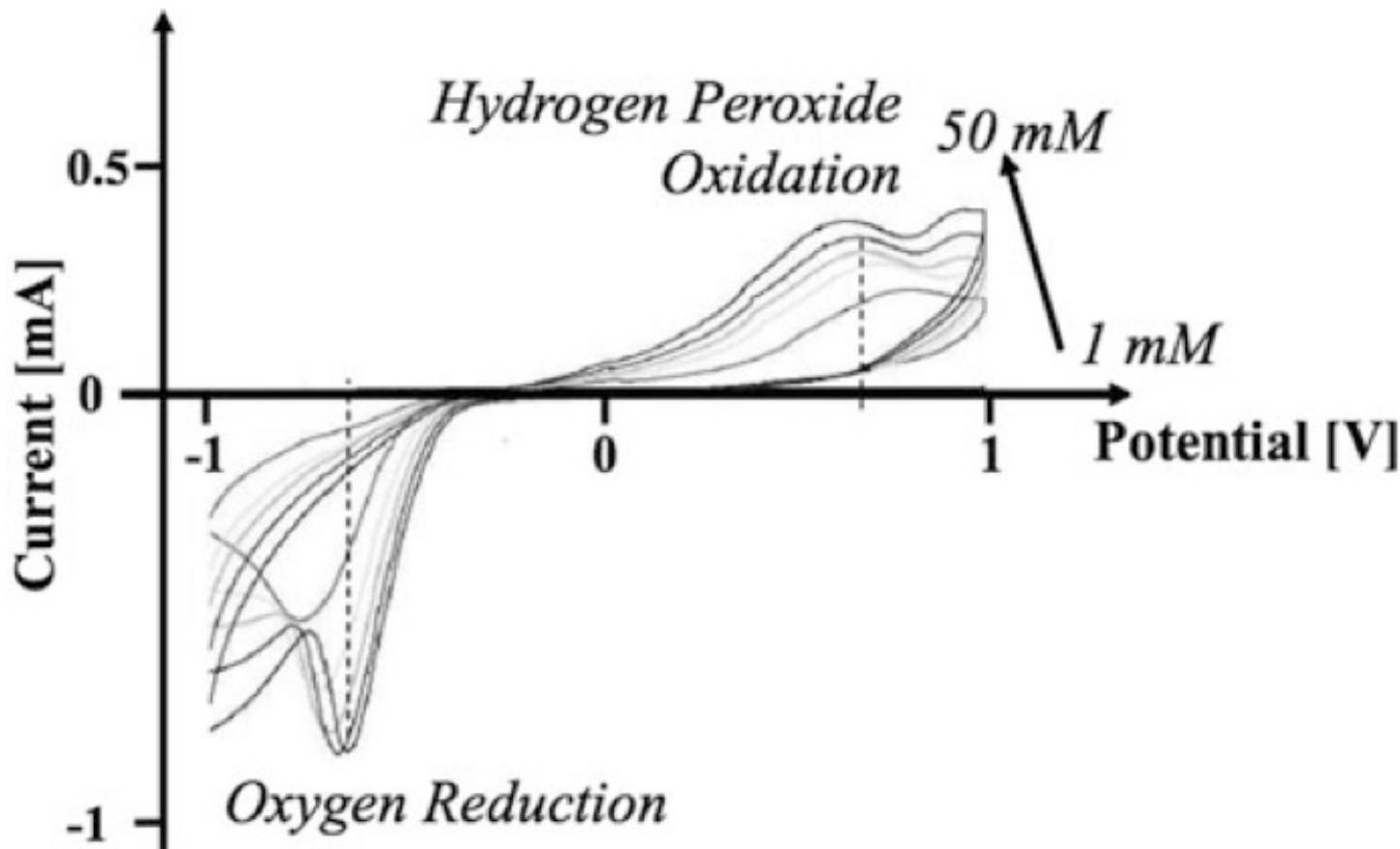
Faradaic currents from Chrono-Amperometry



Faradaic currents from Cyclic Voltammetry



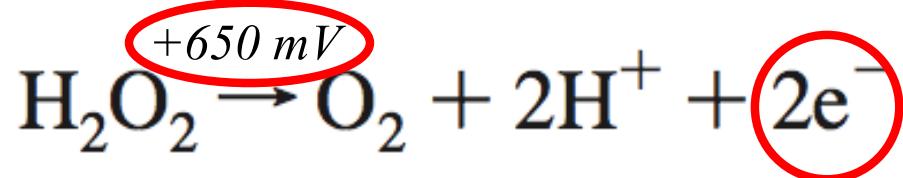
CV with Hydrogen Peroxide



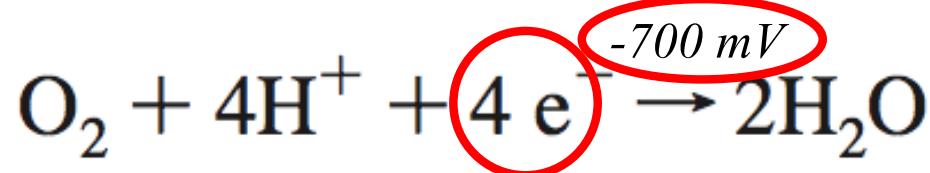
O⁺ reduction and H₂O₂ oxidation observed by potential sweeping

Redox with Hydrogen Peroxide

The hydrogen peroxide provides two possible redox reactions. An oxidation:



The produced Oxygen can be further reduced :



Relevant Redox Reactions Equations?

$$V_{I_{MAX}} = f([C]) \quad \text{Nernst equation}$$

$$I = f([C], V) \bigg|_{\frac{dV}{dt} \neq 0} \quad \text{Randles-Sevcik equation}$$

$$I = f([C], t) \bigg|_{V=Const} \quad \text{Cottrell equation}$$

To derive electrochemical Equations we
need of the Laplace's Transforms

$$\hat{f}(s) = L[f(t)] = \int_0^{\infty} f(t) e^{-st} dt \quad L_s[t^n] = \frac{n!}{s^{n+1}}$$

$$L[af(t) + bg(t)] = af(s) + bg(s)$$

$$L_s\left[\frac{\partial f(t)}{\partial t}\right] = s\hat{f}(s) - f(0)$$

$$L_s\left[\frac{\partial^2 f(t)}{\partial t^2}\right] = s^2\hat{f}(s) - s f(0) - \left[\frac{\partial f(t)}{\partial t}\right]_{t=0}$$

Fick's Laws

The mass flow also has a direction driven by the gradient of concentration (defined by means of the vector differential operator):

$$\vec{j}_m = -D \vec{\nabla} C(\vec{x}, t)$$

In non-vector form (by rotating the x-axis in the direction of the maximum flux and neglecting the variations on y- and z-axes):

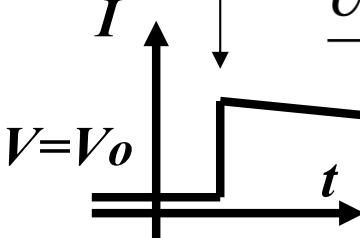
$$j_m \cong -D \frac{\partial C(x, t)}{\partial x}$$

The accumulation rate is provided by the mass flux through a fluidic volume:

$$\frac{\partial C(x, t)}{\partial t} = -\frac{\partial j_m}{\partial x} \rightarrow \frac{\partial C(x, t)}{\partial t} = D \frac{\partial^2 C(x, t)}{\partial x^2}$$

The Cottrell Equation

[C1] Linear diffusion equation



$$\frac{\partial C(x,t)}{\partial t} = D \frac{\partial^2 C(x,t)}{\partial x^2} \quad L_s \left[\frac{\partial f(t)}{\partial t} \right] = \hat{sf}(s) - f(0)$$

Boundary conditions

$$\left\{ \begin{array}{l} C(x,0) = C_0 \\ \lim_{x \rightarrow \infty} C(x,t) = C_0 \\ \lim_{t \rightarrow \infty} C(0,t) = 0 \end{array} \right.$$

$s\hat{C}(s,t) - C(x,0) = D \frac{\partial^2 \hat{C}(s,t)}{\partial x^2}$

$C(x,0) = C(x \rightarrow \infty, t) = C_0$

$\frac{\partial^2 \hat{C}(x,s)}{\partial x^2} - \frac{s}{D} \hat{C}(x,s) = -\frac{C_0}{D}$

The Cottrell Equation

$$\frac{\partial^2 \hat{C}(x, s)}{\partial x^2} - \frac{s}{D} \hat{C}(x, s) = -\frac{C_0}{D}$$

$$\hat{C}(x, s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x} + B(s)e^{s\sqrt{s/D}x}$$

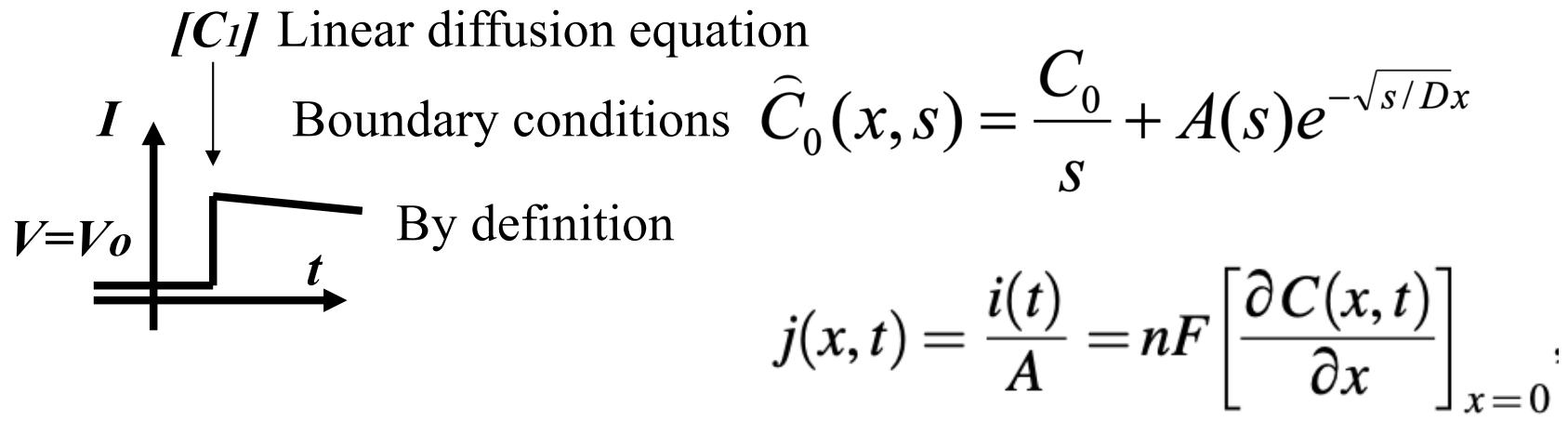
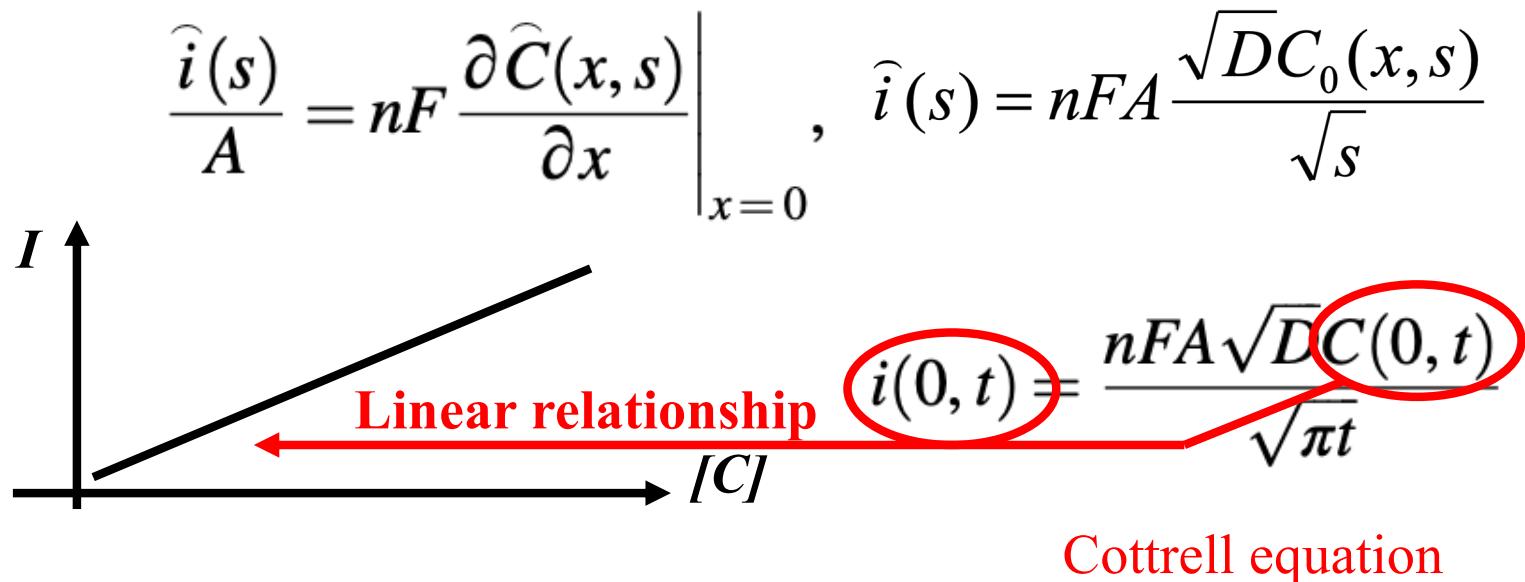
$$\lim_{t \rightarrow \infty} C(0, t) = 0$$

$$L_s[t^n] = \frac{n!}{s^{n+1}}$$

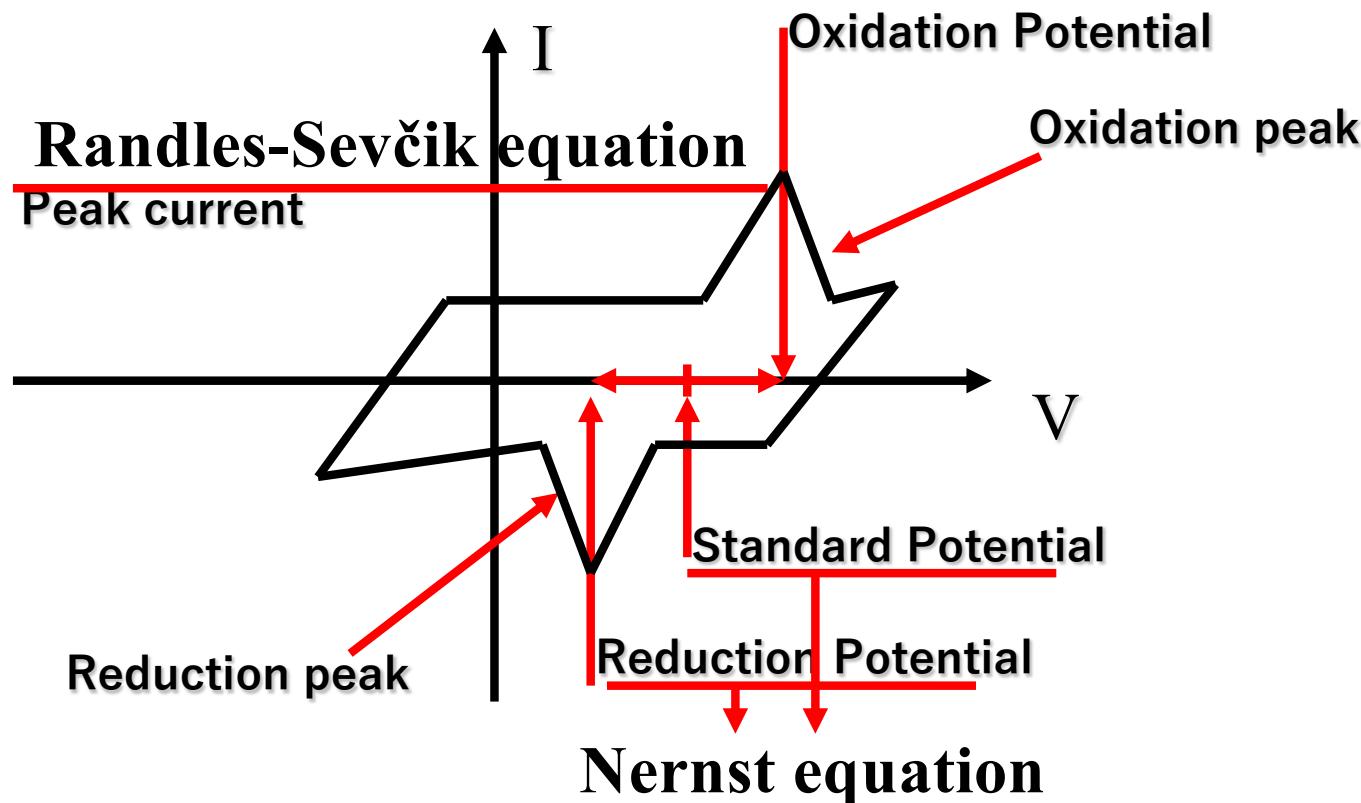
$$\lim_{x \rightarrow \infty} \hat{C}(x, s) = \frac{C_0}{s}$$

$$B(s) = 0, \text{ while } \hat{C}(x, s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x}$$

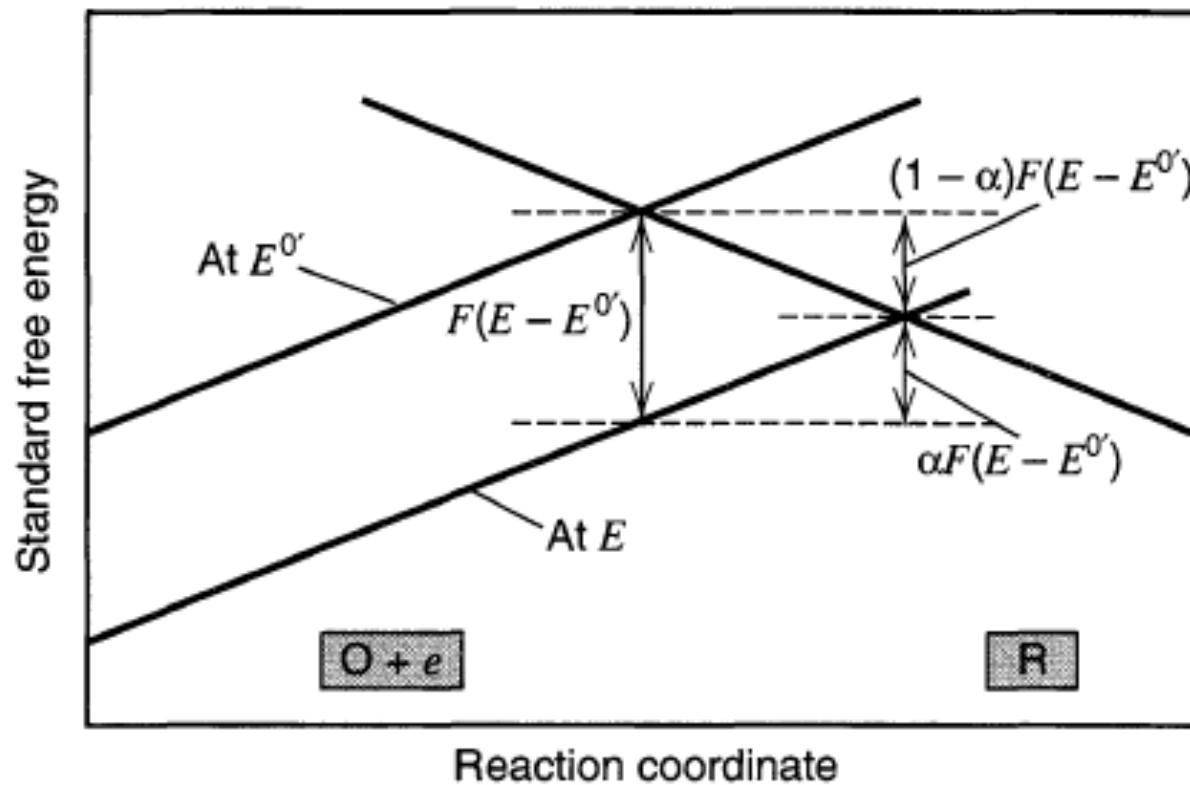
The Cottrell Equation



Redox reactions from Voltammetry

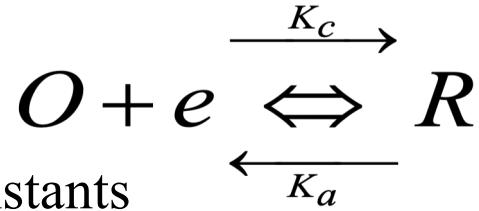


Redox Reactions



Nernst Equation

Redox Reaction



Equilibrium Constants

$$\begin{cases} k_c = k_c^0 e^{-\frac{\Delta G_c}{RT}} = k_c^0 e^{-\frac{\Delta G_c^0 + \alpha n F (E - E^0)}{RT}} \\ k_a = k_a^0 e^{-\frac{\Delta G_a}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0 - (1 - \alpha) n F (E - E^0)}{RT}} \end{cases}$$

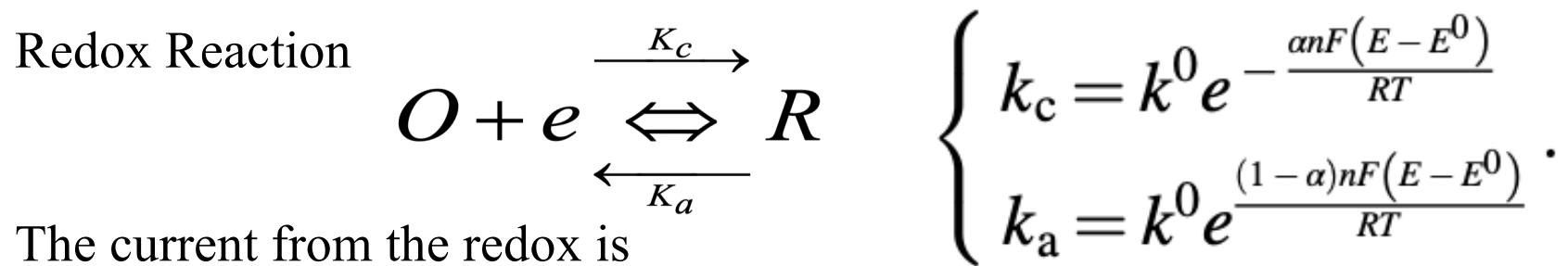
$$= k_c^0 e^{-\frac{\Delta G_c^0}{RT}} e^{-\frac{\alpha F (E - E^0)}{RT}} \\ k_a^0 e^{-\frac{\Delta G_a^0}{RT}} e^{-\frac{(1 - \alpha) F (E - E^0)}{RT}}$$

@ Equilibrium:

$$E = 0; \alpha = 0.5; k_c = k_a \Rightarrow k_c^0 e^{-\frac{\Delta G_c^0}{RT}} = k_a^0 e^{-\frac{\Delta G_a^0}{RT}} \equiv k^0$$

Nernst Equation

Redox Reaction



$$i = i_c - i_a = nFA [k_c C_O(0, t) - k_a C_R(0, t)]$$

$$i = nFAk^0 \left[C_O(0, t) e^{-\frac{\alpha nF(E - E^0)}{RT}} - C_R(0, t) e^{\frac{(1-\alpha)nF(E - E^0)}{RT}} \right]$$

@ Equilibrium:

$$i = 0 \Rightarrow C_O(0, t) e^{-\frac{\alpha nF(E - E^0)}{RT}} = C_R(0, t) e^{\frac{(1-\alpha)nF(E - E^0)}{RT}}$$

Nernst Equation

@ Equilibrium:

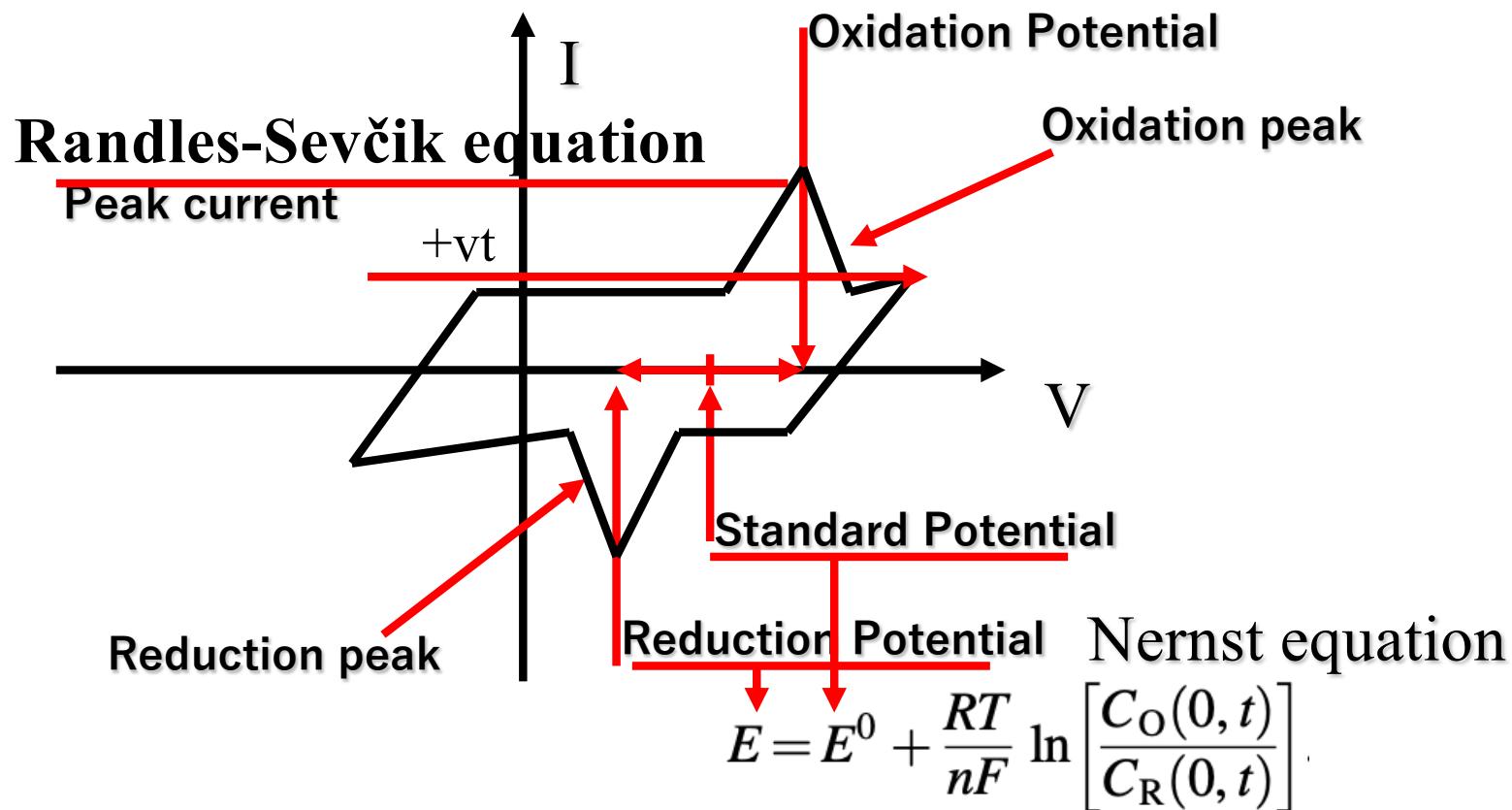
$$i=0 \Rightarrow C_O(0, t) e^{-\frac{\alpha nF(E-E^0)}{RT}} = C_R(0, t) e^{\frac{(1-\alpha)nF(E-E^0)}{RT}}$$

$$\frac{C_O(0, t)}{C_R(0, t)} = e^{\frac{nF(E-E^0)}{RT}} \quad \rightarrow \quad \frac{nF(E-E^0)}{RT} = \ln \left[\frac{C_O(0, t)}{C_R(0, t)} \right]$$

$$E = E^0 + \frac{RT}{nF} \ln \left[\frac{C_O(0, t)}{C_R(0, t)} \right] \quad \text{Nernst equation}$$

If n electrons are involved!

Redox reactions from Voltammetry



Randles-Sevcik Equation

Voltage Sweep

$$E = E_i + vt$$

$$\frac{C_O(0, t)}{C_R(0, t)} = e^{\frac{F(E_{\text{initial}} + vt - E^0)}{RT}}$$

$$\hat{C}_0(x, s) = \frac{C_0}{s} + A(s)e^{-\sqrt{s/D}x}$$

$$j(x, t) = \frac{i(t)}{A} = nFD \left[\frac{\partial C(x, t)}{\partial x} \right]_{x=0} \Rightarrow i(t) = nFAD \left[\frac{\partial C(x, t)}{\partial x} \right]_{x=0}$$

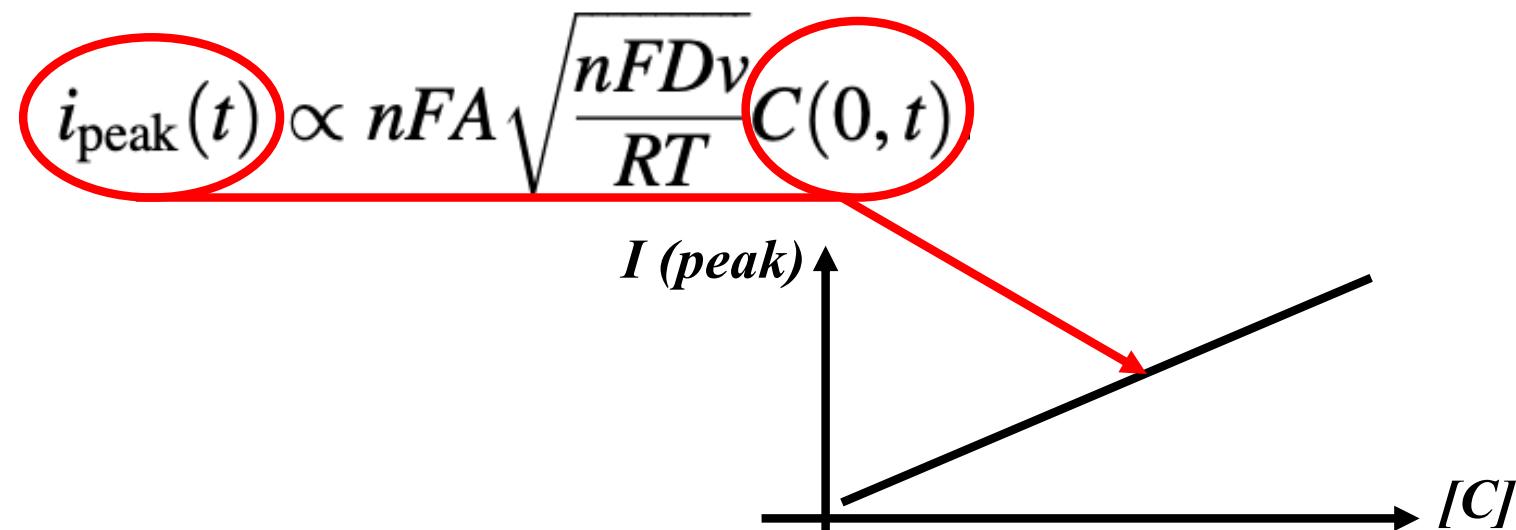
$$\left[\frac{\partial C(x, t)}{\partial x} \right]_{i=i_{\text{peak}}} \propto \sqrt{\frac{nFDv}{RT}} C(0, t). \rightarrow i_{\text{peak}}(t) \propto nFA \sqrt{\frac{nFDv}{RT}} C(0, t).$$

Randles-Sevcik Equation

Voltage Sweep

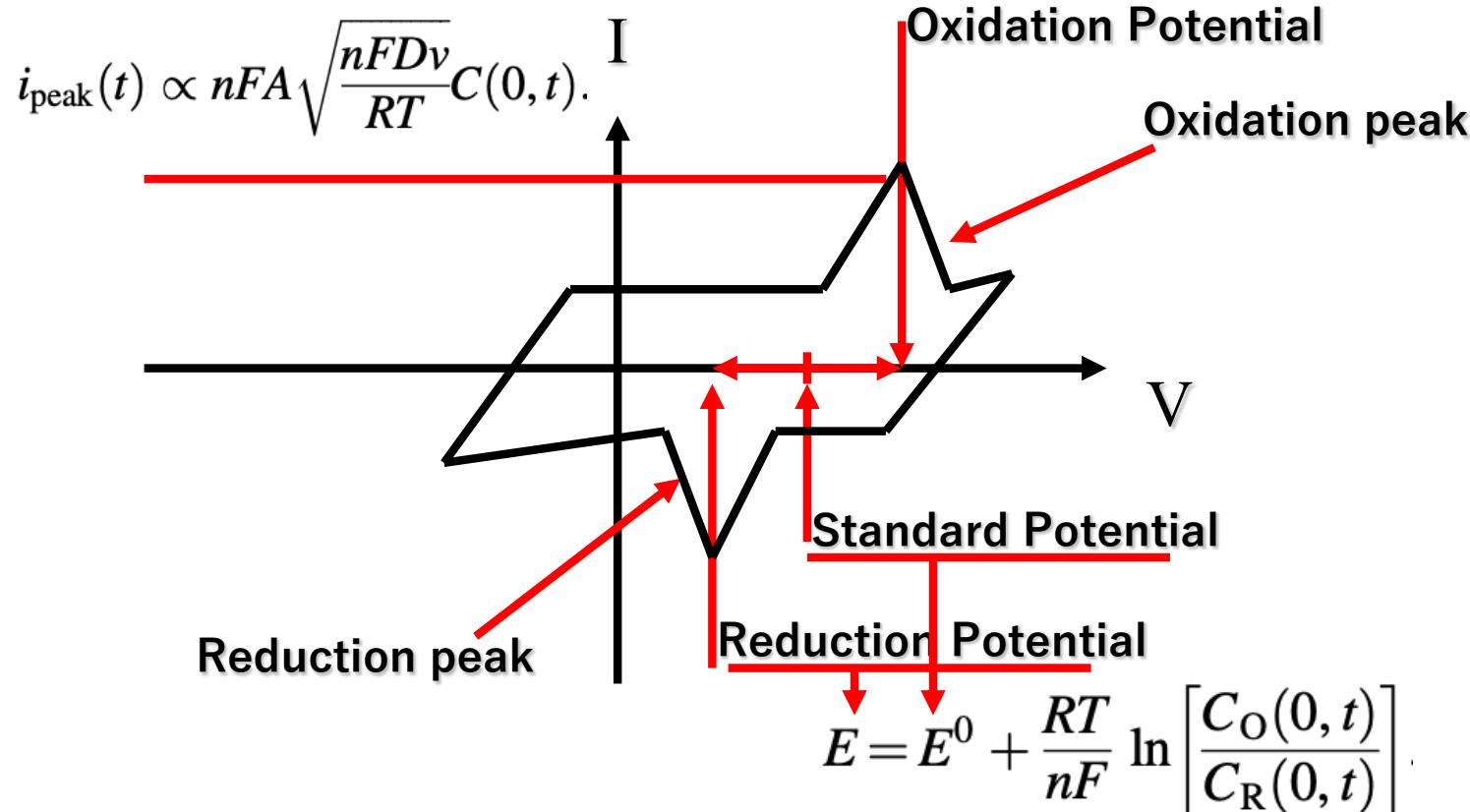
$$E = E_i + vt$$

$$\frac{C_O(0, t)}{C_R(0, t)} = e^{\frac{F(E_{\text{initial}} + vt - E^0)}{RT}}$$



Redox reactions from Voltammetry

Randles-Sevcik equation for the Peak current



Nernst equation